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NOMENCLATURE 

temperature gradient (assumed con- 
stant), aT/dx rF/ft] ; 
tube radius [ft] ; 
= q/(T, - Tb), heat-transfer coeflicient for 
fully developed flow based on bulk tempera- 
ture difference [Btu/sft’degF]; 
= x/a, axial distance [dimensionless] ; 
= jgAa’/v& Grashof number ; 
= NG,Nr., Rayleigh number; 
= 2aU p/b Reynolds number; 
= U$ag, Froude number; 
= p/p,, U& pressure [dimensionless] ; 
= r/a. radius distance from the centre line of 
the tube [dimensionless] ; 
average axial velocity and density at entrance 
to heat-transfer section ; 
volumetric coefficient of thermal expansion 
of the fluid [degF- i] ; 
two-dimensional Laplacian in cylindrical 
coordinates ; 
three-dimensional Laplacian in cylindrical 
coordinates ; 
fluid properties in the usual notation; 
= - (T, - T)/Aa, difference between the 
wall temperature and any point of the fluid 
at the same section [dimensionless] ; 
= - (T, - T)/Aa, difference between the 
wall temperature and bulk temperature of 
the fluid at the same section [dimensionless] ; 
= ox/U, v,/U, vJU, the axial radial and 
angular velocities respectively [dimension- 
less]. 
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AND FORCED 

INTRODUCTION 

WHEN, in non-isothermal flow, density differences which 
arise in the fluid due to temperature differences are sulliently 
large to produce large buoyancy forces under the action of 
the gravitational field, the resulting natural convection 
effects cannot be neglected and the buoyant force terms must 
be retained in the equations. 

An indication of the relative magnitude of the forced and 
free convection effects may be obtained most readily by 
nondimensionalixing the differential equations describing 
the flow, and by examining the relatiw. magnitude of such 
parameters as the Reynolds, Grashof and Prandtl number. 
Of particular importance in the case of combined free and 
forced convection in closed conduits is the orientation of 
the gravitational held. 

Theoretical studies of fully developed combined free and 
forced convection flow under uniform heat flux, inside 
straight vertical circular tubes. have been reported by 
Ostroumov [l], Hallman [2] and Morton [3] among others. 
Morton [4] studied the same for horizontal tubes Iqbal 
and Stachiewicz [SJ in a recent paper reported the study 
of the same phenomenon in inclined tubes and showed 
that for a given set of dimensionless parameters, there is a 
particular tube inclination that produces a maximum heat- 
transfer rate. 

All the foregoing references considered density being 
variable only in the buoyancy terms of the momentum 
equations. For flow through vertical tubes Koppel and 
Smith [a], Worsee-Schmidt and Leppert [7] considered 
the effect of temperature dependence of density throughout 
the governing equations Casal and Gill [8] investigated 
tbe same problem for horizontal tubes. This paper deals with 
inclined tubes. 

FORMULATION OF THE PROBLEM 

Consider a straight circular tube of radius a under uniform 
heat flux, and inclined at an angle a to the horizontal, 
within which a fully developed laminar flow is taking place 
The buoyancy forces created within the fluid produce 
secondary flows distorting the normal Poiseuille llow to a 
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form of helical motion. The thermophysical properties 
such as specific heat, thermal conductivity and viscosity 
are assumed constant. Density is considered linearly 
variable with temperature throughout the fluid i.e. it is 
variable along the radial, angular as well as axial direction. 
Although the assumption of constant viscosity is un- 
questionably the least accurate. it is one that is made in 
most analytical studies such as Hallman’s [2], Morton’s 
[3,43, etc. 

Since the variation of density causes a change in axial 
velocity along the tube length, the axial pressure gradient 
ap/ax is no longer constant. Flow is considered fully de- 
veloped in the sense that the steep axial gradients of velocity 
and temperature near the tube entranCe and at the beginning 
of the heated section have vanished and the velocity and 
thermal boundary layers have merged throughout the tube 
section It is assumed that in this region, the axial gradients 
of the radial and the angular velocities are sufficiently small 
to be neglected The axial gradient of the axial velocity is 
retained; it is, however, considered to be relatively small. 
In this region of “fully developed flow”, the temperature 
difference (T’,‘, - 7) between tube wall and the fluid at the 
same section is assumed independent of the distance along 
the tube length. 

ANALYSIS 

Using the cylindrical polar coordinate system, (where 6 is 
measured from the top vertical position of tube circum- 
ference) the governing equations for laminar flow under the 
foregoing assumptions can be written in dimensionless 
form as : 

Continuity equation. 

Momentm equations. In L, R, and 6 directions these are 
respectively, 

+$ V~&@$g - 
Re i i 

agcos8cosa p 
u2 

0 
‘p, (3) 

Energy equation 

In this equation axial conduction and frictional dissipation 
are ignored. 

Equation of state. Since the constant heat flux condition 
produces a linear variation of temperature with tube length 
(except in the entrance region), the density ratio p/p,, 
becomes a linear function of distance. which in the dimen- 
sionless form can be written as, 

P 
-= 1 - NRoT 
PO 

N4N; (L + a,). 
RI PI 

(6) 

It will be noticed in equation (6) that by varying the magni- 
tude of the Froude number N, the ratio p/p,, can be assigned 
any desired variation with temperature. Thus in this 
particular problem N, will be used to signify the variable 
density effect even though physically this has, of course, no 
meaning For N, = 0 and any specific value of NRO other 
than zero the effect on the momentum equations will be the 
same as if the density was considered variable only in the 
buoyancy terms. 

The equations (l-5) are to be solved under the following 
boundary conditions, 

$,(l, e) = &(l. 0) = &(l, e) = @(l. 0) = 0 (7) 

&SO. 9) +,(O, 01 &(O. 6). @(O, 0) are finite. (8) 

ln addition, the integral form of the continuity equation. 
given by the identity 

(9) 

must also be satisfied. 
Equations (1-S) have been solved by a perturbation 

solution which expresses the dependent variables in power 
series of the Rayleigh number. The detailed method of 
solution is similar to that employed in [4, 5, 61. As such, 
these details are not given here. Having obtained the 
velocity and temperature equations, the evaluation of the 
friction factor and the Nusselt number follows directly. 

FRICTION FACTOR 

Fanning friction factor f; defined as: (shear stress per 
unit area on wetted wall)/(kinetic energy of the fluid per 
unit volumeA can be expressed in dimensionless form as, 
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NUSSELT NUMBER 

TM conventional definition of Nusselt number is 

NNu = f2d/{& - T,)} = - ~,~N,/(~@,)T 

where x is the bulk temperature of the fluid and 4 is the 
dimensionless bulk temperature difference. 

DISCUSSION OF RESULTS 

Velocity profiles 
The study of velocity profiles shows that for “constant 

density” case. i.e. N,, = 0, the profiles ate similar to the 
ones given in [4], i.e. for horizontal case, the maximum 
velocity occurs below the tube centre line. As the tube 
inclination increases toward the vertical position, the 
position of maximum velocity shifts toward the centre, 
until for the vertical case the profiles become symmetrical 
about the centre. When the density is variable throughout 
the field, the axial velocity will be a function of axial length 
as shown for the horizontal case in Figs 1 and 2. Comparison 

of Fig 1 with 2 shows that for lower Prandtl number 
fluids (lower viscosity) the increase of axial velocity is larger 
than in the case of higher Prandtl number fluids. 

Friction factors 
The expression for the Fanning friction factor J averaged 

over a length L is given by equation (10). Friction factors 
have been plotted in Figs 3-5. Figure 3 shows the variation 
off with Rayleigh number and with tube inclination. It 
appears that inclining the tube by about 30” above the 
horizontal has a considerably greater effect on friction 
factor than a variation in the tube inclination by the same 
amount from the vertical position. 

Figure 4 shows the variation of friction factor with 
Reynolds numbers for various values of Rayleigh numbers. 
It shows that the buoyancy induced circulation has a 
considerable effect on the frictional characteristics of the 
flow. The effect on friction factor of introducing a variable 
density has also been investigated and a typical variation 
is shown in Fig. 5. This plot shows that variation in Nr, 

N&=20 - 

N-=30 - 
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Dimensionless axial velocity, * 

FIG. 1. Dimensionless axial velocity against dimensionless radius. 
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FIG. 2. Dimensionless axial velocity against dimensionless radius. 
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&, = 0.75 

A& = 25 

&, = 0001 
L s50 

Raykigh number NR,, 

FIG. 3. Friction factor against Rayleigh number for various 
tube inclinations. 

h Na =0.75 
NF, =OGOl 

ReyMlds ruthr N, 

FIG. 4. Friction factor against Reynolds number for varying 
values of Rayleigh number. 

Rayndds t-u-r&r Nm 

FIG. 5. Friction factor against Reynolds number for varying 
values of Froude number. 

(i.e. in degree of dependence of density on temperature) 
affects the friction coefficient relatively little. The curve for 
NF, = 0 is almost identical to that for N,, = 0001 at 
Prandtl number of 0.75, (variation is even smaller at higher 
Prandtl numbers). There is, however, a difference of about 
5-8 per cent between the values off obtained in the present 
analysis and those calculated by the simplified method in 
which density is assumed constant in all except the buoyancy 
terms of the momentum equations. This difference is shown 
in Fig 5. A curve of isothermal friction factor is added in 
Fig. 5 to illustrate the effect of buoyant forces on friction 
factors. 

Temperature profiles and Nusselt numbers 
Study of temperature profiles and Nusselt numbers 

evaluated from the present analysis shows that the introduc- 
tion of variable density has an insignificant effect. These 
plots remain the same as in [S]. It therefore appears that, 
as far as the heat-transfer analysis is concerned, the results 
would have been equally good if in the initial formulation 
of the continuity, momentum and energy equations, the 
variation of density with temperature was not taken into 
account. except of course. in the buoyancy terms of the 
momentum equations. This is a standard approach in free 
convection studies and the present results confirm its 
validity. 

CONCLUSIONS 

Introduction of temperature dependent density function 
into all the equations governing flow in inclined tubes 
affects primarily the velocity field and only very slightly 
the temperature field. 

The friction factor which, at a 60” tube inclination. is 
increased from 30-B per cent over the isothermal value by 
the introduction of a buoyant force term into the momentum 
equations (while keeping the density constant in all other 
terms); is increased by a further 5-10 per cent when a more 
rigorous analysis is performed in which the density is 
allowed to vary throughout the governing equations. 

The Nusselt numbers on the other hand are essentially 
the same, at least within the range of Rayleigh numbers 
for which the perturbation analysis is valid, whether the 
simplified “constant density”. or the variable density 
approach is used. 
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NOMENCLATURE 

C, heat capacity ; 
D, molecular diffusivity ; 
h, convective heat-transfer coefftcient ; 
kc, heat conductivity ; 
t convective mass-transfer coefficient ; 
L, length of a slab ; 
Mm mean molecular weight ; 
Nub, Nusselt number for heat transfer, h&/k,; 
Nq,,, Sherwood number for mass transfer, k&/D; 

Pr, Prandtl number, C&k, ; 
Re, Reynolds number, u,L/v ; 
SC, Schmidt number, v/D ; 
St,, Stanton number for beat transfer, NuJPr Re; 

St, Stanton number for mass transfer, Nu JSc Re; 

u, velocity in the axial direction ; 
4, free stream velocity ; 
V, velocity in the normal direction ; 
I4 molecular viscosity; 

P? density; 
B, psychrometric ratio defined by equation (1) ; 

R. 
kinematic viscosity; 
log mean inert partial pressure. 
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INTRODUCI’ION 

THE ANALOGY between momentum, heat and mass transfer 
has long been used for the correlation of heat- and mass- 
transfer coeffmients for turbulent flow in pipes. The empirical 
extension of the methods used for pipes has been successfully 
employed for different shapes [l, 2, 31. These correlations 
have steadily improved as more accurate knowledge of 
velocity and eddy viscosity distribution has been obtained. 

The analogy between momentum, heat and mass transfer 
in turbulent flow has been used by several investigators 
including Redingfield and Drew [4] and Lynch and Wilke 
[5, 63 for analyzing their psychrometric data Even though 
much effort has been directed towards predicting the 
psychrometric ratio [7], no completely satisfactory agree- 
ment has been found among the numerous empirical 
relations which have been proposed. Wilke and Wasan 
[S] proposed a correlation for the psychrometric ratio 
based on their recent analysis of the transfer of heat and 
mass in pipe flow [9, lo]. 

The application of analogy for the. prediction of the 
psychrometric ratio for a given geometry, should be possible 
if the necessary correlations of velocity distribution and 
friction coetIIcients for gas flow have. been developed Most 
of the existing psychrometric data have been obtained for 
a thermometer bulb of an approximately cylindrical shape. 
Wilke and Wasan made an attempt to apply the general 
form of the analogy for mass and heat transfer in pipes to 


